Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros


Bases de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
ACS Sustain Chem Eng ; 12(9): 3766-3779, 2024 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-38456191

RESUMO

5-Hydroxymethylfurfural (HMF) and furfural (Fur) are promising biobased platform chemicals, derived from the dehydration of carbohydrate feedstocks, normally conducted in an aqueous phase. Plagued by side-reactions in such phase, such as the rehydration to levulinic acid (LA) and formic acid (FA) or self-condensation to humins, HMF and Fur necessitates diversification from monophasic aqueous reaction systems toward biphasic systems to mitigate undesired side-reactions. Here, a methodology based on the COnductor-like Screening MOdel for Real Solvents (COSMO-RS) method was used to screen solvent candidates based on the predicted partition coefficients (Ki). Hansen solubility parameters in conjunction with excess thermodynamic quantities determined by COSMO-RS were employed to assess solvent compatibility. Experimental validation of the COSMO-RS values highlighted only minor deviations from the predictions with root-mean-square-error (RMSE) values of HMF and Fur at 0.76 and 5.32, respectively, at 298 K. The combined effort suggested cyclohexanone, isophorone, and methyl isobutyl ketone (MIBK) as the best candidates. Finally, extraction solvent reuse demonstrated cyclohexanone suitability for HMF extraction with KHMF of 3.66 and MIBK for Fur with KFur 7.80 with consistent partitioning across four total runs. Both solvents are classified as recommended by the CHEM21 solvent selection guide, hence adding to the sustainability of the process.

2.
Front Nutr ; 9: 953169, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36159477

RESUMO

Soybeans are mainly used for food and biodiesel production. It is estimated that soy crops worldwide will leave about 651 million metric tons of branches, leaves, pods, and roots on the ground post-harvesting in 2022/23. These by-products might serve as largely available and cheap source of high added-value metabolites, such as flavonoids, isoflavonoids, and other phenolic compounds. This work aimed to explore green approaches based on the use of pressurized and gas expanded-liquid extraction combined with natural deep eutectic solvents (NADESs) to achieve phenolic-rich extracts from soy by-products. The total phenolic and flavonoid contents of the generated extracts were quantified and compared with conventional solvents and techniques. Pressurized liquid extraction (PLE) with choline chloride/citric acid/water (1:1:11 - molar ratio) at 120°C, 100 bar, and 20 min, resulted in an optimized condition to generate phenolic and flavonoid-rich fractions of soy by-products. The individual parts of soy were extracted under these conditions, with their metabolic profile obtained by UHPLC-ESI-QToF-MS/MS and potential antioxidant properties by ROS scavenging capacity. Extracts of soy roots presented the highest antioxidant capacity (207.48 ± 40.23 mg AA/g), three times higher than soybean extracts (68.96 ± 12.30). Furthermore, Hansen solubility parameters (HSPs) were applied to select natural hydrophobic deep eutectic solvents (NaHDES) as substituents for n-heptane to defat soybeans. Extractions applying NaHDES candidates achieved a similar yield and chromatography profile (GC-QToF-MS) to n-heptane extracts.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA